diff --git a/paper/rat.lp b/paper/rat.lp index c0a20bf49c7d93a0915fa84b816b72c40c5797aa..a64cde3198325f64407165d4b78791f06c2e624a 100644 --- a/paper/rat.lp +++ b/paper/rat.lp @@ -79,7 +79,7 @@ proof refine snd (Snz n) assume n Hn refine nznat_induction - (λz, (Z =ℕ (fst (Snz n) * (fst z))) ⊃ false) ?zOnz[n,Hn] ?zSnz[n,Hn] + (λz, (Z =ℕ (fst (Snz n) * (fst z))) ⊃ false) ?zOnz[n;Hn] ?zSnz[n;Hn] simpl refine snd (Snz n) assume m Hm diff --git a/prelude/numbers.lp b/prelude/numbers.lp index 28d32a6d58e5b910048c0a8eb10915339fe92b56..d0ead4eb595fed52060f947ef8a5e4371f44cd4e 100644 --- a/prelude/numbers.lp +++ b/prelude/numbers.lp @@ -49,15 +49,15 @@ symbol associative_add constant symbol real_pred: η (pred numfield) definition real ≔ psub real_pred -set flag "print_implicits" on symbol Num_real: ε (∀ (λx: η {|!Number!|}, real_pred (insertnum x))) // Built in the PVS typechecker -definition nonzero_real ≔ - psub {real} - (λx: η real, - neq {_} x (cast {_} {real} (λx, x) (insertnum 0) _)) +// TODO: metavariables left +// definition nonzero_real ≔ +// psub {real} +// (λx: η real, +// neq {_} x (cast {_} {real} (λx, x) (insertnum 0) _)) // symbol closed_plus_real: Π(x y: Term real), // let pr ≔ S.restr numfield real_pred in