diff --git a/paper/proof_irr.lp b/paper/proof_irr.lp index c4ddbf6b9279f9abe35ee25b37d5058638c5ff19..31933a840655baa6d36b37e392da7cfa07456151 100644 --- a/paper/proof_irr.lp +++ b/paper/proof_irr.lp @@ -15,10 +15,10 @@ symbol p1: Prf (z ≤ s z) symbol p2: Prf (z ≤ s z) definition bounded (k: El â„•) ≔ psub (λn, n ≤ k) -constant symbol slist (bound: El â„•): Set +constant symbol slist (_: El â„•): Set constant symbol snil (bound: El â„•): El (slist bound) constant symbol scons {bound: El â„•} (head: El (bounded bound)) - (tail: El (slist (fst head))) + (_: El (slist (fst head))) : El (slist bound) set declared "lâ‚" @@ -40,7 +40,7 @@ symbol app_pair {a b: Set} (x y: El a) (p: El a → Bool) symbol plus: El â„• → El â„• → El â„• set infix left 10 "+" ≔ plus -constant symbol even_p: El â„• → Bool +symbol even_p: El â„• → Bool definition even ≔ psub even_p symbol plus_closed_even (n m: El even): Prf (even_p ((fst n) + (fst m))) @@ -48,12 +48,6 @@ symbol plus_closed_even (n m: El even): Prf (even_p ((fst n) + (fst m))) definition add (n m: El even) : El even ≔ pair ((fst n) + (fst m)) (plus_closed_even n m) -symbol app_thm (a b: Set) (f: El (a ~> b)) - (x y: El a) (_: Prf (x = y)) - : Prf (f x = f y) - -symbol fun_ext (a b: Set) (f g: El (a ~> b)) (_: Prf (∀ (λx, f x = g x))): Prf (f = g) - symbol plus_commutativity (n m: El â„•): Prf (n + m = m + n) theorem even_add_commutativity (n m: El even): Prf (add n m = add m n) @@ -68,19 +62,3 @@ proof // fst n + m = fst m + n refine plus_commutativity (fst n) (fst m) qed - -// Toy example -set declared "nâ‚€" -set declared "nâ‚" -symbol nâ‚€: El â„• -symbol nâ‚: El â„• - -symbol nz_eq_no: Prf (nâ‚€ = nâ‚) -symbol pred: El â„• → Bool -symbol pq0: Prf (pred nâ‚€) -symbol pq1: Prf (pred nâ‚) - -definition ps ≔ psub pred -theorem thethm: Prf (@pair â„• pred nâ‚€ pq0 = @pair â„• pred nâ‚ pq1) -proof -admit