From b99378914d90bc279c435613c13ed60e428905ed Mon Sep 17 00:00:00 2001 From: gabrielhdt <gabrielhondet@gmail.com> Date: Mon, 2 Mar 2020 11:35:04 +0100 Subject: [PATCH] several corrections --- prelude/cert_f/numbers.lp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/prelude/cert_f/numbers.lp b/prelude/cert_f/numbers.lp index fcb2d2d..558c83a 100644 --- a/prelude/cert_f/numbers.lp +++ b/prelude/cert_f/numbers.lp @@ -11,7 +11,7 @@ constant symbol number: Term uType // Theory number_fields // symbol field_pred: Term number ⇒ Univ Prop -constant symbol number_field : Term (ePsub number field_pred) +definition number_field ≔ ePsub number field_pred // number_field is an uninterpreted subtype definition numfield ≔ number_field @@ -27,7 +27,7 @@ proof admit symbol lt (x y: Term real): Term bool set infix 6 "<" ≔ lt -definition leq (x y: Term real) ≔ (lt x y) ∨ (@eq real x y) +definition leq (x y: Term real) ≔ (lt x y) ∨ (eq {real} x y) definition gt (x y: Term real) ≔ y < x set infix 7 ">" ≔ gt definition geq (x y: Term real) ≔ leq y x @@ -49,7 +49,7 @@ constant symbol rational: Term uType // symbol integer_pred: Term (pred rational) // constant symbol integer: Term (∃ integer_pred) ⇒ Term uType -constant symbol integer: Term uType +definition integer ≔ ePsub rational integer_pred // Proof of existence because NONEMPTY_TYPE theorem integer_not_empty: Term (∃ integer_pred) proof @@ -58,5 +58,5 @@ definition int ≔ integer symbol natz : Term int -definition nonzero_integer ≔ ePsub int (λx, neq natz x) +definition nonzero_integer ≔ ePsub int (neq natz) definition nzint ≔ nonzero_integer -- GitLab