/* Non dependent tuples, or non dependent telescopes. Should be supereseded by general telescopes. */ require open personoj.lhol; require open personoj.extra.arity-tools; constant symbol SVec : N → TYPE; injective symbol & {n: N}: Set → SVec n → SVec (s n); constant symbol &nil : SVec z; notation & infix right 10; constant symbol σ {n: N}: SVec n → Set; symbol SVmap {n: N}: (Set → Set) → SVec n → SVec n; rule SVmap _ &nil ↪ &nil with SVmap $f ($x & $y) ↪ ($f $x) & (SVmap $f $y); /* [mkarr tele ret] creates the type [tele₀ ~> tele₁ ~> ... ~> ret]. */ injective symbol mkarr {n: N}: SVec n → Set → Set; rule mkarr &nil $Ret ↪ $Ret with mkarr ($X & $Q) $Ret ↪ arr $X (mkarr $Q $Ret); /* [mkarr* v] creates the product type [El v₀ → El v₁ → ... → Set]. */ symbol mkarr* {n: N}: SVec n → TYPE; rule mkarr* &nil ↪ Set with mkarr* ($x & $y) ↪ El $x → mkarr* $y; injective symbol ^ {n: N} {a: Set} {v: SVec n}: El a → El (σ v) → El (σ (a & v)); constant symbol ^nil : El (σ &nil); notation ^ infix right 10; symbol match {l: N} {v: SVec l} {ret: Set} (arg: El (σ v)): El (mkarr v ret) → El ret; rule match {z} {&nil} ^nil $e ↪ $e with @match _ _ $Ret ($x ^ $y) $f ↪ @match _ _ $Ret $y ($f $x); /* [match* t f] applied function [f] that yields a type to the components of [t]. */ symbol match* {l: N} {v: SVec l} (arg: El (σ v)): mkarr* v → Set; rule match* ^nil $e ↪ $e with match* ($x ^ $y) $f ↪ match* $y ($f $x); /// Standard accessors symbol car {n: N}: SVec n → Set; rule car ($x & _) ↪ $x; symbol cdr {n: N}: SVec (s n) → SVec n; rule cdr (_ & $x) ↪ $x; symbol cadr {n: N} (v: SVec (s n)): Set ≔ car (cdr v); // Surjective pairing for SetVec rule (car $x) & (cdr $x) ↪ $x; symbol head {l: N} {v: SVec l} (arg: El (σ v)): El (car v); rule head ($x ^ _) ↪ $x; symbol tail {l: N} {v: SVec (s l)}: El (σ v) → El (σ (cdr v)); rule tail (_ ^ $y) ↪ $y; // Surjective pairing for tuples rule (head $x) ^ (tail $x) ↪ $x; /// Accessors /* [nth n v arg] returns the [n]th element of vector [v]. NOTE: the argument [arg] is not used in the computation, but we need it to have the same interface as telescopes. */ symbol nth {l: N} (_: N) (v: SVec l) (_: El (σ v)): Set; rule nth z ($x & _) _ ↪ $x with nth (s $n) (_ & $tl) $x ↪ nth $n $tl (tail $x); // NOTE we must take care to be able to reduce even if the argument is a // variable. symbol proj {l: N} {v: SVec l} (n: N) (arg: El (σ v)): El (nth n v arg); rule proj z ($x ^ _) ↪ $x with proj (s $n) (_ ^ $Y) ↪ proj $n $Y; /// Convenience /* [a && b] creates the telescope of two (independant) codes. */ symbol && (a b: Set) ≔ a & b & &nil; notation && infix 11; assert (X: Set) ⊢ X & X && X ≡ X & (X && X); /* [x ^^ y] creates a tuple of two elements with [x] and [y]. */ symbol ^^ {a: Set} {b: Set} (x: El a) (y: El b) ≔ x ^ y ^ ^nil; notation ^^ infix 11;