require open personoj.encodings.lhol require open personoj.encodings.pvs_cert require open personoj.encodings.bool_hol require open personoj.encodings.prenex require open personoj.encodings.builtins // // Booleans // In [adlib.cert_f.bootstrap] // // Equalities // // // Notequal // // definition neq {T: Set} (x y: η T) ≔ ¬ (x = y) // symbol neq: χ (∀S (λt, scheme (t ~> t ~> bool))) // rule neq _ $x $y ↪ ¬ ($x = $y) // set infix left 2 "/=" ≔ neq // set infix left 2 "≠" ≔ neq /// Defined in builtins // // if_def // // // boolean_props // Slightly modified from the prelude constant symbol bool_exclusive: ε (neq {bool} false true) constant symbol bool_inclusive : ε (∀ {bool} (λa, ((eq {bool} a false) ∨ (λ_, eq {bool} a true)))) theorem excluded_middle: ε (∀ {bool} (λa, a ∨ (λ_, ¬ a))) proof assume x f refine f qed // // xor_def // definition xor (a b: η bool) ≔ neq {bool} a b // PVS solves that kind of things thanks to the (bddsimp) tactic which uses an // external C program theorem xor_def : ε (∀ {bool} (λa, ∀ {bool} (λb, eq {bool} (xor a b) (if {bool} a (λ_, ¬ b) (λ_, b))))) proof set prover "Alt-Ergo" set prover_timeout 12 assume a b p simpl assume hxor admit // // Quantifier props[t: TYPE], built in // // Defined types // // FIXME: needs another prenex polymorphism to be encoded, require open personoj.encodings.pvs_more definition pred : ι ({|set|} *> {|set|}) ≔ λt: θ {|set|}, t ~> bool definition PRED ≔ pred definition predicate ≔ pred definition PREDICATE ≔ pred definition setof ≔ pred definition SETOF ≔ pred // // exists1 // // // equality_props // constant symbol If_true : ε (∀B (λt, ∀ (λx, ∀ {t} (λy, if true (λ_, x) (λ_, y) = x)))) constant symbol If_false : ε (∀B (λt, ∀ (λx, ∀ {t} (λy, if false (λ_, x) (λ_, y) = y)))) theorem if_same : ε (∀B (λt, ∀ {bool} (λb, ∀ (λx: η t, if b (λ_, x) (λ_, x) = x)))) proof admit constant symbol reflexivity_of_equals: ε (∀B (λt, ∀ (λx: η t, x = x))) set builtin "refl" ≔ reflexivity_of_equals constant symbol transitivity_of_equals : ε (∀B (λt, ∀(λx: η t, ∀(λy: η t, ∀(λz: η t, (x = y) ∧ (λ_, y = z) ⊃ (λ_, x = z)))))) constant symbol symmetry_of_equals : ε (∀B (λt, ∀ (λx: η t, (∀ (λy: η t, (x = y) ⊃ (λ_, y = x)))))) // Not in prelude! theorem eqind {t} x y: ε (x = y) → Πp: η t → Bool, ε (p y) → ε (p x) proof assume t x y heq apply symmetry_of_equals t x y heq qed set builtin "eqind" ≔ eqind // // if_props // theorem lift_if1: ε (∀B (λs: θ {|set|}, ∀B (λt: θ {|set|}, ∀ {bool} (λa, ∀ (λx: η s, ∀ (λy: η s, ∀ (λf: η (s ~> t), f (if a (λ_, x) (λ_, y)) = if a (λ_, f x) (λ_, f y)))))))) proof admit theorem lift_if2: ε (∀B (λs, ∀ {bool} (λa, ∀ {bool} (λb, ∀ {bool} (λc, ∀ (λx: η s, ∀ (λy: η s, if (if {bool} a (λ_, b) (λ_, c)) (λ_, x) (λ_, y) = if a (λ_, if b (λ_, x) (λ_, y)) (λ_, if c (λ_, x) (λ_, y))))))))) proof admit