Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
chiffrageChaotique
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
koizel
chiffrageChaotique
Commits
3ceb37e7
Commit
3ceb37e7
authored
8 years ago
by
gabrielhdt
Browse files
Options
Downloads
Patches
Plain Diff
corrections, plus de légendes
parent
f8628d55
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
presentation.tex
+66
-50
66 additions, 50 deletions
presentation.tex
with
66 additions
and
50 deletions
presentation.tex
+
66
−
50
View file @
3ceb37e7
...
...
@@ -92,7 +92,7 @@
\subsection
{
\'
Etude de l'oscillateur: apparition du chaos
}
\subsubsection
{
Du continu au discret: fonction de Poincaré
}
$
\
textcolor
{
green
}{
\
phi
_
t
(
x
)
}
$
,
$
g
(
x
)
=
\phi
_{
\tau
(
x
)
}
(
x
)
$
,
$
g
$
fonction de Poincaré.
$
\phi
_
t
(
x
)
$
,
$
g
(
x
)
=
\phi
_{
\tau
(
x
)
}
(
x
)
$
,
$
g
$
fonction de Poincaré.
\vspace
{
40mm
}
\begin{figure}
[!h]
\centering
...
...
@@ -132,26 +132,34 @@ $\textcolor{green}{\phi_t(x)}$, $g(x) = \phi_{\tau(x)}(x)$, $g$ fonction de Poin
\paragraph
{
\'
Eléments de preuve du chaos via la théorie de la bifurcation
}
\[
f
_
\lambda
(
x
)
=
G
(
\lambda
, x
)
\colon
\R
^
2
\to\R
\]
\begin{figure}
[!h]
\centering
\subfloat
[$\lambda\sinh(x), \lambda < 1$]
{
\begin{tikzpicture}
\begin{axis}
[width=60mm,axis x line = middle, axis y line = middle, ticks=none]
\addplot
[mark = none, smooth, domain=-2:2]
{
0.6*sinh(x)
}
;
\addplot
[mark=none, domain=-2:2]
{
x
}
;
\end{axis}
\end{tikzpicture}
}
\quad
\subfloat
[$\lambda\sinh(x), \lambda > 1$]
{
\begin{tikzpicture}
\begin{axis}
[width=60mm,axis x line = middle, axis y line = middle, ticks=none]
\addplot
[mark=none, smooth, domain=-2:2]
{
1.2*sinh(x)
}
;
\addplot
[mark=none, domain=-2:2]
{
x
}
;
\end{axis}
\end{tikzpicture}
}
\end{figure}
\begin{thm}
[Bifurcation de doublement de période]
Soit
$
f
_
\lambda
(
x
)
$
telle que:
$
f
_
\lambda
(
0
)
=
0
$
,
$
f
_{
\lambda
_
0
}
'
(
0
)
=
-
1
$
et
$
\left
.
\frac
{
\partial
(
f
_
\lambda
^
2
)
'
}{
\partial
\lambda
}
\right\rvert
_{
\lambda
=
\lambda
_
0
}$
.
Alors il existe une fonction
$
p
$
telle que
\[
f
_{
p
(
x
)
}
(
x
)
\ne
x
\text
{
mais
}
f
_{
p
(
x
)
}^
2
(
x
)
=
x
\text
{
.
}\]
\end{thm}
%\begin{figure}[!h]
% \centering
% \subfloat[$\lambda\sinh(x), \lambda < 1$]
% {\begin{tikzpicture}
% \begin{axis}[width=60mm,axis x line = middle, axis y line = middle, ticks=none]
% \addplot[mark = none, smooth, domain=-2:2] {0.6*sinh(x)};
% \addplot[mark=none, domain=-2:2] {x};
% \end{axis}
% \end{tikzpicture}
% }
% \quad
% \subfloat[$\lambda\sinh(x), \lambda > 1$]
% {\begin{tikzpicture}
% \begin{axis}[width=60mm,axis x line = middle, axis y line = middle, ticks=none]
% \addplot[mark=none, smooth, domain=-2:2] {1.2*sinh(x)};
% \addplot[mark=none, domain=-2:2] {x};
% \end{axis}
% \end{tikzpicture}
% }
%\end{figure}
\subparagraph
{
\'
Evolution vers le chaos
}
\begin{prop}
...
...
@@ -159,7 +167,7 @@ $\textcolor{green}{\phi_t(x)}$, $g(x) = \phi_{\tau(x)}(x)$, $g$ fonction de Poin
\end{prop}
\begin{figure}
[H]
\centering
\subfloat
[Graphe de $F_{2.9}^2(x)$]
\subfloat
[Graphe de $F_{2.9}^2(x)$
, un seul point fixe
]
{
\begin{tikzpicture}
\begin{axis}
[width = 6cm, ticks=none, axis x line = middle, axis y line = left]
\addplot
[mark=none, domain=0:1, smooth]
{
8.41*(1-x)*x*(1-2.9*(1-x)*x)
}
;
...
...
@@ -168,7 +176,7 @@ $\textcolor{green}{\phi_t(x)}$, $g(x) = \phi_{\tau(x)}(x)$, $g$ fonction de Poin
\end{tikzpicture}
}
\quad
\subfloat
[Graphe de $F_{3.2}^2(x)$]
\subfloat
[Graphe de $F_{3.2}^2(x)$
, apparition d'un deuxième point fixe
]
{
\begin{tikzpicture}
\begin{axis}
[width = 6cm, ticks = none, axis x line = middle, axis y line = left]
\addplot
[mark=none, domain=0:1, smooth]
{
10.24*(1-x)*x*(1-3.2*(1-x)*x)
}
;
...
...
@@ -189,10 +197,11 @@ $L_\mu$ affine telle que $L_\mu(p_\mu) = 0$ et $L_\mu(\hat{p}_\mu) = 0$,
\end{axis}
\end{tikzpicture}
\caption
{
Diagramme d'orbite de la fonction logistique
$
F
(
x
)
=
\mu
x
(
1
-
x
)
$
pour
$
\mu
\in
[
3
,
4
]
$}
\label
{
fig:diag
_
orb
}
$
F
(
x
)
=
\mu
x
(
1
-
x
)
$
pour
$
\mu
\in
[
3
,
4
]
$
, chaque séparation correspond
à une bifurcation de doublement de période.
}
\label
{
fig:diag
_
orb
}
\end{figure}
\subsection
{
Retour
à l'oscillateur de Chua
}
\subsection
{
Application
à l'oscillateur de Chua
}
\begin{figure}
[H]
\centering
\begin{tikzpicture}
...
...
@@ -202,13 +211,20 @@ $L_\mu$ affine telle que $L_\mu(p_\mu) = 0$ et $L_\mu(\hat{p}_\mu) = 0$,
\end{axis}
\end{tikzpicture}
\caption
{
Diagramme d'orbite, obtenu en calculant une fonction de Poincaré
par paramètre
$
\alpha
$
balayé.
}
par paramètre
$
\alpha
$
balayé, on retrouve la succession de bifurcations
de doublement de période menant au chaos.
}
\end{figure}
\section
{
Mise en
\oe
uvre
}
\section
{
Mise en
\oe
uvre
d'un oscillteur de Chua
}
\subsection
{
Réalisation du circuit
}
\begin{description}
\item
[Choix des composants]
condensateurs à films, plus précis.
\item
[Résultat]
pas de signal exploitable, circuit trop sensible.
\end{description}
\subsection
{
Simulation numérique
}
\subsection
{
Application: cryptage d'informations
}
Via Python et la fonction
\texttt
{
odeint
}
de
\texttt
{
scipy
}
pour la résolution
du système.
\subsection
{
Cryptage d'informations
}
\subsubsection
{
Cryptage d'un signal par masque additif, transmission par AM
}
%\begin{figure}[H]
%\begin{tikzpicture}
...
...
@@ -219,32 +235,32 @@ $L_\mu$ affine telle que $L_\mu(p_\mu) = 0$ et $L_\mu(\hat{p}_\mu) = 0$,
%\end{tikzpicture}
%\end{figure}
\[
s
_
m
(
t
)
=
A
_
p
\left
[
1
+
m
\left
(
e
(
t
)+
x
(
t
)
\right
)
\right
]
\cos
(
2
\symup
{
\pi
}
f
_
pt
)
\]
\begin{center}
\begin{tikzpicture}
% Signal
\draw
[->]
(5,0) node[above]
{$
e
(
t
)
$}
-- (6.25,0);
% Chua
\draw
(6.5,2) node
{$
\mathfrak
{
C
}$}
;
\draw
(6,1.75) rectangle (7,2.25);
\draw
[->]
(6.5,1.75) -- (6.5,0.25);
% Somme
\draw
(6.5,0) circle (0.25cm);
\draw
(6.5,0) node
{$
+
$}
;
\draw
[->]
(6.75,0) -- (8,0);
% Porteuse
\draw
[->]
(5,-0.5) node[below]
{$
p
(
t
)
$}
-- (8,-0.5);
% Multiplieur
\draw
(10,-0.25) node
{
multiplicateur
}
;
\draw
(8,-0.75) rectangle (12,0.25);
% Sortie
\draw
[->]
(12,-0.25) -- (13,-0.25) node[right]
{$
s
_
m
(
t
)
$}
;
\end{tikzpicture}
\end{center}
%
\begin{center}
%
\begin{tikzpicture}
%
% Signal
%
\draw[->] (5,0) node[above] {$e(t)$} -- (6.25,0);
%
% Chua
%
\draw (6.5,2) node {$\mathfrak{C}$};
%
\draw (6,1.75) rectangle (7,2.25);
%
\draw[->] (6.5,1.75) -- (6.5,0.25);
%
% Somme
%
\draw (6.5,0) circle (0.25cm);
%
\draw (6.5,0) node {$+$};
%
\draw[->] (6.75,0) -- (8,0);
%
% Porteuse
%
\draw[->] (5,-0.5) node[below] {$p(t)$} -- (8,-0.5);
%
% Multiplieur
%
\draw (10,-0.25) node {multiplicateur};
%
\draw (8,-0.75) rectangle (12,0.25);
%
% Sortie
%
\draw[->] (12,-0.25) -- (13,-0.25) node[right] {$s_m(t)$};
%
\end{tikzpicture}
%
\end{center}
\subsubsection
{
Utilisation en GPA
}
Cryptage par flux avec ``XOR'' noté
$
\oplus
$
.
\begin{cor}
\[
a
=
b
\oplus
c
\iff
b
=
a
\oplus
c
\]
$
a
=
b
\oplus
c
\iff
b
=
a
\oplus
c
$
\end{cor}
\subsection
{
Vérifications de la théorie: dépendance sensible et apériodicité
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment