Skip to content
Snippets Groups Projects
Commit 03325943 authored by hondet's avatar hondet
Browse files

Updated to lambdapi

parent 9067a18d
No related branches found
No related tags found
No related merge requests found
...@@ -3,16 +3,18 @@ require open personoj.encodings.prenex ...@@ -3,16 +3,18 @@ require open personoj.encodings.prenex
require open personoj.encodings.logical require open personoj.encodings.logical
// It may be generalisable to dependent propositions // It may be generalisable to dependent propositions
theorem and_intro: opaque
symbol and_intro:
Prf Prf
(∀ {prop} (λa, (∀ {prop} (λa,
∀ {prop} (λb, ∀ {prop} (λb,
a ⊃ (λ_, b ⊃ (λ_, a ∧ (λ_, b)))))) a ⊃ (λ_, b ⊃ (λ_, a ∧ (λ_, b))))))
proof begin
assume A B h0 h1 f assume A B h0 h1 f
refine f h0 h1 refine f h0 h1
qed end
theorem and_elim_1 a b (_: Prf (a ∧ (λ_, b))): Prf a opaque
proof symbol and_elim_1 a b (_: Prf (a ∧ (λ_, b))): Prf a ≔
begin
admit admit
...@@ -24,11 +24,11 @@ constant symbol str_empty: El {|!String!|} ...@@ -24,11 +24,11 @@ constant symbol str_empty: El {|!String!|}
constant symbol str_cons: El {|!Number!|} → El {|!String!|} → El {|!String!|} constant symbol str_cons: El {|!Number!|} → El {|!String!|} → El {|!String!|}
set declared "∃" set declared "∃"
definition ∃ {T: Set} (P: El T → El prop) ≔ ¬ (∀ (λx, ¬ (P x))) symbol ∃ {T: Set} (P: El T → El prop) ≔ ¬ (∀ (λx, ¬ (P x)))
symbol propositional_extensionality: symbol propositional_extensionality:
Prf (∀ {prop} (λp, (∀ {prop} (λq, (iff p q) ⊃ (λ_, eq {prop} p q))))) Prf (∀ {prop} (λp, (∀ {prop} (λq, (iff p q) ⊃ (λ_, eq {prop} p q)))))
definition neq {t} x y ≔ ¬ (eq {t} x y) symbol neq {t} x y ≔ ¬ (eq {t} x y)
set infix left 2 "/=" ≔ neq set infix left 2 "/=" ≔ neq
set infix left 2 "≠" ≔ neq set infix left 2 "≠" ≔ neq
...@@ -8,23 +8,25 @@ symbol eq {T: Set}: El T → El T → Prop ...@@ -8,23 +8,25 @@ symbol eq {T: Set}: El T → El T → Prop
set infix left 2 "=" ≔ eq set infix left 2 "=" ≔ eq
set builtin "eq" ≔ eq set builtin "eq" ≔ eq
definition neq {s: Set} (x y: El s) ≔ ¬ (x = y) symbol neq {s: Set} (x y: El s) ≔ ¬ (x = y)
set infix 2 "≠" ≔ neq set infix 2 "≠" ≔ neq
// Leibniz equality // Leibniz equality
rule Prf ($x = $y) ↪ Πp: El (_ ~> prop), Prf (p $x) → Prf (p $y) rule Prf ($x = $y) ↪ Πp: El (_ ~> prop), Prf (p $x) → Prf (p $y)
// Some theorems for equality // Some theorems for equality
theorem eq_refl {a: Set} (x: El a): Prf (x = x) opaque
proof symbol eq_refl {a: Set} (x: El a): Prf (x = x) ≔
begin
assume a x p h assume a x p h
apply h apply h
qed end
set builtin "refl" ≔ eq_refl set builtin "refl" ≔ eq_refl
theorem eq_trans {a: Set} (x y z: El a) (_: Prf (x = y)) (_: Prf (y = z)) opaque
: Prf (x = z) symbol eq_trans {a: Set} (x y z: El a) (_: Prf (x = y)) (_: Prf (y = z))
proof : Prf (x = z) ≔
begin
assume a x y z hxy hyz p px assume a x y z hxy hyz p px
refine hyz p (hxy p px) refine hyz p (hxy p px)
qed end
...@@ -7,4 +7,4 @@ require open personoj.encodings.logical ...@@ -7,4 +7,4 @@ require open personoj.encodings.logical
// Equality operates on the maximal supertype. It allows to profit // Equality operates on the maximal supertype. It allows to profit
// from predicate subtyping for free in the propositional equality. // from predicate subtyping for free in the propositional equality.
symbol eq {t: Set} (_: El (T.t (μ t) (μ t))): Prop symbol eq {t: Set} (_: El (T.t (μ t) (μ t))): Prop
definition neq {t} m ≔ ¬ (@eq t m) symbol neq {t} m ≔ ¬ (@eq t m)
...@@ -3,22 +3,22 @@ ...@@ -3,22 +3,22 @@
require open personoj.encodings.lhol require open personoj.encodings.lhol
require open personoj.encodings.pvs_cert require open personoj.encodings.pvs_cert
definition false ≔ ∀ {prop} (λx, x) symbol false ≔ ∀ {prop} (λx, x)
definition true ≔ impd {false} (λ_, false) symbol true ≔ impd {false} (λ_, false)
symbol eq {s: Set}: El s → El s → El prop symbol eq {s: Set}: El s → El s → El prop
set infix left 6 "=" ≔ eq set infix left 6 "=" ≔ eq
definition not p ≔ eq {prop} p false symbol not p ≔ eq {prop} p false
set prefix 5 "¬" ≔ not set prefix 5 "¬" ≔ not
constant symbol if {s: Set} p: (Prf p → El s) → (Prf (¬ p) → El s) → El s constant symbol if {s: Set} p: (Prf p → El s) → (Prf (¬ p) → El s) → El s
rule Prf (if $p $then $else) rule Prf (if $p $then $else)
↪ (Πh: Prf $p, Prf ($then h)) → Πh: Prf (¬ $p), Prf ($else h) ↪ (Πh: Prf $p, Prf ($then h)) → Πh: Prf (¬ $p), Prf ($else h)
definition and p q ≔ if {prop} p q (λ_, false) symbol and p q ≔ if {prop} p q (λ_, false)
definition or p q ≔ if {prop} p (λ_, true) q symbol or p q ≔ if {prop} p (λ_, true) q
definition imp p q ≔ if {prop} p q (λ_, true) symbol imp p q ≔ if {prop} p q (λ_, true)
set infix left 4 "∧" ≔ and set infix left 4 "∧" ≔ and
set infix left 3 "∨" ≔ or set infix left 3 "∨" ≔ or
set infix left 2 "⊃" ≔ imp set infix left 2 "⊃" ≔ imp
......
// Definition based on implication // Definition based on implication
require open personoj.encodings.lhol require open personoj.encodings.lhol
definition false ≔ ∀ {prop} (λx, x) symbol false ≔ ∀ {prop} (λx, x)
definition true ≔ impd {false} (λ_, false) symbol true ≔ impd {false} (λ_, false)
definition not P ≔ impd {P} (λ_, false) symbol not P ≔ impd {P} (λ_, false)
set prefix 5 "¬" ≔ not set prefix 5 "¬" ≔ not
definition imp P Q ≔ impd {P} Q symbol imp P Q ≔ impd {P} Q
set infix 2 "⊃" ≔ imp set infix 2 "⊃" ≔ imp
definition and P Q ≔ ¬ (P ⊃ (λh, ¬ (Q h))) symbol and P Q ≔ ¬ (P ⊃ (λh, ¬ (Q h)))
set infix 4 "∧" ≔ and set infix 4 "∧" ≔ and
definition or P Q ≔ (¬ P) ⊃ Q symbol or P Q ≔ (¬ P) ⊃ Q
set infix 3 "∨" ≔ or set infix 3 "∨" ≔ or
set builtin "bot" ≔ false set builtin "bot" ≔ false
...@@ -25,4 +25,4 @@ set builtin "or" ≔ or ...@@ -25,4 +25,4 @@ set builtin "or" ≔ or
symbol if {s: Set} (p: Prop): (Prf p → El s) → (Prf (¬ p) → El s) → El s symbol if {s: Set} (p: Prop): (Prf p → El s) → (Prf (¬ p) → El s) → El s
rule if {prop} $p $then $else ↪ ($p ⊃ $then) ⊃ (λ_, (¬ $p) ⊃ $else) rule if {prop} $p $then $else ↪ ($p ⊃ $then) ⊃ (λ_, (¬ $p) ⊃ $else)
definition iff P Q ≔ (P ⊃ (λ_, Q)) ∧ ((λ_, Q ⊃ (λ_, P))) symbol iff P Q ≔ (P ⊃ (λ_, Q)) ∧ ((λ_, Q ⊃ (λ_, P)))
...@@ -10,8 +10,8 @@ symbol fst: Π{t: Set} {p: El t → Prop}, El (psub p) → El t ...@@ -10,8 +10,8 @@ symbol fst: Π{t: Set} {p: El t → Prop}, El (psub p) → El t
symbol snd {t: Set}{p: El t → Prop} (m: El (psub p)): Prf (p (fst m)) symbol snd {t: Set}{p: El t → Prop} (m: El (psub p)): Prf (p (fst m))
// Proof irrelevance // Proof irrelevance
definition pair {t: Set} {p: El t → Prop} (m: El t) (_: Prf (p m)) symbol pair {t: Set} {p: El t → Prop} (m: El t) (_: Prf (p m))
≔ pair' t p m ≔ pair' t p m
rule fst (pair' _ _ $M) ↪ $M rule fst (pair' _ _ $M) ↪ $M
......
...@@ -33,25 +33,25 @@ constant symbol prop_exclusive: Prf (neq {prop} false true) ...@@ -33,25 +33,25 @@ constant symbol prop_exclusive: Prf (neq {prop} false true)
constant symbol prop_inclusive: constant symbol prop_inclusive:
Prf (∀ {prop} (λa, ((eq {prop} a false) ∨ (λ_, eq {prop} a true)))) Prf (∀ {prop} (λa, ((eq {prop} a false) ∨ (λ_, eq {prop} a true))))
theorem excluded_middle: Prf (∀ {prop} (λa, a ∨ (λ_, ¬ a))) opaque
proof symbol excluded_middle: Prf (∀ {prop} (λa, a ∨ (λ_, ¬ a)))
≔ begin
assume x f assume x f
refine f refine f
qed end
// //
// xor_def // xor_def
// //
definition xor (a b: El prop) ≔ neq {prop} a b symbol xor (a b: El prop) ≔ neq {prop} a b
// PVS solves that kind of things thanks to the (bddsimp) tactic which uses an // PVS solves that kind of things thanks to the (bddsimp) tactic which uses an
// external C program // external C program
theorem xor_def: opaque
symbol xor_def:
Prf (∀ {prop} (λa, ∀ {prop} (λb, eq {prop} (xor a b) Prf (∀ {prop} (λa, ∀ {prop} (λb, eq {prop} (xor a b)
(if {prop} a (λ_, ¬ b) (λ_, b))))) (if {prop} a (λ_, ¬ b) (λ_, b)))))
proof ≔ begin
set prover "Alt-Ergo"
set prover_timeout 12
assume a b p assume a b p
simpl simpl
assume hxor assume hxor
...@@ -61,12 +61,12 @@ admit ...@@ -61,12 +61,12 @@ admit
// //
// Defined types // Defined types
// //
definition pred: El_k (∀K (λ_, scheme_k {|set|})) ≔ λt, t ~> prop symbol pred: El_k (∀K (λ_, scheme_k {|set|})) ≔ λt, t ~> prop
definition PRED ≔ pred symbol PRED ≔ pred
definition predicate ≔ pred symbol predicate ≔ pred
definition PREDICATE ≔ pred symbol PREDICATE ≔ pred
definition setof ≔ pred symbol setof ≔ pred
definition SETOF ≔ pred symbol SETOF ≔ pred
// //
// exists1 // exists1
...@@ -82,9 +82,11 @@ constant ...@@ -82,9 +82,11 @@ constant
symbol If_false symbol If_false
: Prf (∀B (λt, ∀ (λx, ∀ {t} (λy, if false (λ_, x) (λ_, y) = y)))) : Prf (∀B (λt, ∀ (λx, ∀ {t} (λy, if false (λ_, x) (λ_, y) = y))))
theorem if_same opaque
symbol if_same
: Prf (∀B (λt, ∀ {prop} (λb, ∀ (λx: El t, if b (λ_, x) (λ_, x) = x)))) : Prf (∀B (λt, ∀ {prop} (λb, ∀ (λx: El t, if b (λ_, x) (λ_, x) = x))))
proof
begin
admit admit
constant symbol reflexivity_of_equals: Prf (∀B (λt, ∀ (λx: El t, x = x))) constant symbol reflexivity_of_equals: Prf (∀B (λt, ∀ (λx: El t, x = x)))
...@@ -101,18 +103,20 @@ symbol symmetry_of_equals ...@@ -101,18 +103,20 @@ symbol symmetry_of_equals
: Prf (∀B (λt, ∀ (λx: El t, (∀ (λy: El t, (x = y) ⊃ (λ_, y = x)))))) : Prf (∀B (λt, ∀ (λx: El t, (∀ (λy: El t, (x = y) ⊃ (λ_, y = x))))))
// Not in prelude! // Not in prelude!
theorem eqind {t} x y: Prf (x = y) → Πp: El t → Prop, Prf (p y) → Prf (p x) opaque
proof symbol eqind {t} x y: Prf (x = y) → Πp: El t → Prop, Prf (p y) → Prf (p x)
≔ begin
assume t x y heq assume t x y heq
apply symmetry_of_equals t x y heq apply symmetry_of_equals t x y heq
qed end
set builtin "eqind" ≔ eqind set builtin "eqind" ≔ eqind
// //
// if_props // if_props
// //
theorem lift_if1: opaque
symbol lift_if1:
Prf (∀B (λs: Ty {|set|}, Prf (∀B (λs: Ty {|set|},
∀B (λt: Ty {|set|}, ∀B (λt: Ty {|set|},
∀ {prop} ∀ {prop}
...@@ -122,10 +126,11 @@ theorem lift_if1: ...@@ -122,10 +126,11 @@ theorem lift_if1:
∀ (λf: El (s ~> t), ∀ (λf: El (s ~> t),
f (if a (λ_, x) (λ_, y)) f (if a (λ_, x) (λ_, y))
= if a (λ_, f x) (λ_, f y)))))))) = if a (λ_, f x) (λ_, f y))))))))
proof ≔ begin
admit admit
theorem lift_if2: opaque
symbol lift_if2:
Prf (∀B (λs, Prf (∀B (λs,
∀ {prop} ∀ {prop}
(λa, (λa,
...@@ -141,5 +146,5 @@ theorem lift_if2: ...@@ -141,5 +146,5 @@ theorem lift_if2:
= if a = if a
(λ_, if b (λ_, x) (λ_, y)) (λ_, if b (λ_, x) (λ_, y))
(λ_, if c (λ_, x) (λ_, y))))))))) (λ_, if c (λ_, x) (λ_, y)))))))))
proof ≔ begin
admit admit
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment