Skip to content
Snippets Groups Projects
Commit 104d5302 authored by gabrielhdt's avatar gabrielhdt
Browse files

fixed implicit args of prod

parent 5a3ca41b
No related branches found
No related tags found
No related merge requests found
require open encodings.cert_f
definition bool ≔ uProp
definition false: Term bool ≔ @prod Type Prop uProp (λ x, x)
definition true: Term bool ≔ @prod Prop Prop false (λ _, false)
definition false ≔ @prod Type Prop bool (λ x, x)
definition true ≔ @prod Prop Prop false (λ _, false)
definition imp (P Q: Term uProp): Term bool ≔ @prod Prop Prop P (λ_, Q)
definition forall {eT: Term uType} (P: Term eT ⇒ Term bool): Term bool ≔
@prod _ _ eT P
definition imp (P Q: Term uProp) ≔ @prod Prop Prop P (λ_, Q)
definition forall {T: Term uType} (P: Term T ⇒ Term bool) ≔ @prod _ _ T P
definition bnot (P: Term uProp): Term bool ≔ @prod Prop Prop P (λ _, false)
definition bnot (P: Term uProp) ≔ @prod Prop Prop P (λ _, false)
set prefix 5 "¬" ≔ bnot
definition band (P Q: Term uProp) ≔ bnot (imp P (bnot Q))
......@@ -20,11 +19,10 @@ definition biff (P Q: Term bool) ≔ (imp P Q) ∧ (imp Q P)
set infix 7 "⇔" ≔ biff
definition when (P Q: Term uProp) ≔ imp Q P
// FIXME explicitness?
set builtin "bot" ≔ false
set builtin "top" ≔ true
set builtin "imp" ≔ imp
set builtin "and" ≔ band
set builtin "or" ≔ bor
set builtin "or" ≔ bor
set builtin "not" ≔ bnot
......@@ -28,9 +28,10 @@ rule Term uProp → Univ Prop
and Term uType → Univ Type
// [prod s1 s2 A B] encodes [Π x : (A: s1). (B: s2)]
symbol prod {sA sB: Sort} (A: Univ sA): (Term A ⇒ Univ sB) ⇒ Univ (Rule sA sB)
symbol prod {sA: Sort} {sB: Sort} (A: Univ sA):
(Term A ⇒ Univ sB) ⇒ Univ (Rule sA sB)
rule Term (@prod &sA &sB &A &B) → ∀ x : Term {&sA} &A, Term {&sB} (&B x)
rule Term (prod {&sA} {&sB} &A &B) → ∀ x : Term {&sA} &A, Term {&sB} (&B x)
// Predicate subtyping
// can be seen as a dependant pair type with
......@@ -46,7 +47,7 @@ symbol fst {T: Univ Type} (P: Term T ⇒ Univ Prop): Term (Psub T P) ⇒ Term T
// Γ ⊢ M : { v : T | P }
// ——————————————————————————PROJr
// Γ ⊢ snd(M) : P[v ≔ fst(M)]
constant symbol snd {T: Univ Type} (P: Term T ⇒ Univ Prop)
constant symbol snd {T: Univ Type} {P: Term T ⇒ Univ Prop}
(M: Term (Psub T P)):
Term (P (fst P M))
......
......@@ -12,10 +12,11 @@ require adlib.cert_f.subtype as S
//
symbol eq {T: Term uType}: Term T ⇒ Term T ⇒ Term uProp
set infix 5 "=" ≔ eq
// set builtin "eq" ≔ eq
// NOTE not in the prelude
constant symbol cast_trans (A B C: Term uType) (prab: Term (A ⊑ B)) (prbc: Term (B ⊑ C))
(x: Term A):
constant symbol cast_trans (A B C: Term uType) (prab: Term (A ⊑ B))
(prbc: Term (B ⊑ C)) (x: Term A):
Term (eq (↑ {B} C prbc (↑ {A} B prab x))
(↑ {A} C (S.trans A B C prab prbc) x))
......@@ -80,7 +81,7 @@ definition ∃ {eT: Term uType} (P: Term eT ⇒ Term bool) ≔
//
// Defined types
//
definition pred (eT: Univ Type) ≔ @prod Type Type eT (λ_, bool)
definition pred (eT: Univ Type) ≔ prod eT (λ_, bool)
definition PRED ≔ pred
definition predicate ≔ pred
definition PREDICATE ≔ pred
......@@ -114,12 +115,6 @@ proof
qed
symbol reflexivity_of_equal T (x: Term T) : Term (eq x x)
// FIXME: carrying builtins over import?
set builtin "T" ≔ T
set builtin "P" ≔ P
// FIXME: could builtins be more flexible?
// set builtin "eq" ≔ eq
// set builtin "refl" ≔ reflexivity_of_equal
symbol transitivity_of_equal T (x y z: Term T) :
......
......@@ -47,7 +47,9 @@ definition nzreal ≔ nonzero_real
symbol closed_plus_real: ∀(x y: Term real),
let pr ≔ S.restr numfield real_pred in
Term (real_pred ((↑ numfield pr x) + (↑ numfield pr y)))
let xnf ≔ ↑ numfield pr x in
let ynf ≔ ↑ numfield pr y in
Term (real_pred (xnf + ynf))
symbol lt (x y: Term real): Term bool
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment