Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
personoj
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
koizel
personoj
Commits
43d38ae2
Commit
43d38ae2
authored
5 years ago
by
gabrielhdt
Browse files
Options
Downloads
Patches
Plain Diff
proof ok
parent
bc618ec8
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
prelude/nat_ops.lp
+6
-2
6 additions, 2 deletions
prelude/nat_ops.lp
prelude/rat.lp
+5
-2
5 additions, 2 deletions
prelude/rat.lp
with
11 additions
and
4 deletions
prelude/nat_ops.lp
+
6
−
2
View file @
43d38ae2
require open pvs_core prelude.notequal prelude.nat
require open pvs_core prelude.notequal prelude.nat
prelude.equalities
symbol times : eta int ⇒ eta int ⇒ eta int
rule times &n 1 → &n
rule times &n 1 → &n
set infix left 6 "*" ≔ times
// x =/= 0 ∧ y =/= 0 ⇒ x * y =/= 0
symbol prod_not_zero (x y: eta int) :
eps (neq x 0) ⇒ eps (neq y 0) ⇒ eps (neq (times x y) 0)
symbol prod_comm (x y : eta int) : eps (eq (x * y) (y * x))
This diff is collapsed.
Click to expand it.
prelude/rat.lp
+
5
−
2
View file @
43d38ae2
...
...
@@ -19,8 +19,11 @@ symbol rateq : eta rat ⇒ eta rat ⇒ eta Prop
rule rateq (frac &A &B &Pi) (frac &C &D &Pi') →
eq (N.times &A &D) (N.times &B &C)
theorem t1 : ∀ a b : eta int, ∀ pi : eps (neq b 0), ∀ pi' : eps (neq 1 0),
// (a/b) * (b/1) = (a/1)
theorem right_cancellation (a b : eta int) (pi : eps (neq b 0)) (pi' : eps (neq 1 0)):
eps (rateq ((frac a b pi) * (frac b 1 pi')) (frac a 1 pi'))
proof
assume a b pi pi'
admit
simpl
refine N.prod_comm a b
qed
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment