Skip to content
Snippets Groups Projects
Commit 43d38ae2 authored by gabrielhdt's avatar gabrielhdt
Browse files

proof ok

parent bc618ec8
No related branches found
No related tags found
No related merge requests found
require open pvs_core prelude.notequal prelude.nat
require open pvs_core prelude.notequal prelude.nat prelude.equalities
symbol times : eta int ⇒ eta int ⇒ eta int
rule times &n 1 → &n
rule times &n 1 → &n
set infix left 6 "*" ≔ times
// x =/= 0 ∧ y =/= 0 ⇒ x * y =/= 0
symbol prod_not_zero (x y: eta int) :
eps (neq x 0) ⇒ eps (neq y 0) ⇒ eps (neq (times x y) 0)
symbol prod_comm (x y : eta int) : eps (eq (x * y) (y * x))
......@@ -19,8 +19,11 @@ symbol rateq : eta rat ⇒ eta rat ⇒ eta Prop
rule rateq (frac &A &B &Pi) (frac &C &D &Pi') →
eq (N.times &A &D) (N.times &B &C)
theorem t1 : ∀ a b : eta int, ∀ pi : eps (neq b 0), ∀ pi' : eps (neq 1 0),
// (a/b) * (b/1) = (a/1)
theorem right_cancellation (a b : eta int) (pi : eps (neq b 0)) (pi' : eps (neq 1 0)):
eps (rateq ((frac a b pi) * (frac b 1 pi')) (frac a 1 pi'))
proof
assume a b pi pi'
admit
simpl
refine N.prod_comm a b
qed
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment