Skip to content
Snippets Groups Projects
Commit 927e2a67 authored by gabrielhdt's avatar gabrielhdt
Browse files

taken back logic.lp

parent 3818b12f
No related branches found
No related tags found
No related merge requests found
require open personoj.encodings.cert_f
personoj.adlib.bootstrap
require personoj.adlib.induction as I
require personoj.adlib.subtype as S
require open personoj.encodings.lhol
require open personoj.encodings.pvs_cert
require open personoj.encodings.bool_hol
require open personoj.encodings.prenex
//
// Booleans
// In [adlib.cert_f.bootstrap]
......@@ -15,62 +14,60 @@ require personoj.adlib.subtype as S
//
// Notequal
//
definition neq {T: Term uType} (x y: Term T) ≔ bnot (eq x y)
set infix left 6 "/=" ≔ neq
set infix left 6 "≠" ≔ neq
// definition neq {T: Set} (x y: η T) ≔ ¬ (x = y)
symbol neq: χ (∀S (λt, scheme (t ~> t ~> bool)))
rule neq _ $x $y ↪ ¬ ($x = $y)
set infix left 2 "/=" ≔ neq
set infix left 2 "≠" ≔ neq
//
// if_def
//
symbol if {T: Term uType}: Term uProp → Term T → Term T → Term T
// The reduction rules for if are in [equality_props]
//
// boolean_props
// Slightly modified from the prelude
constant symbol bool_exclusive: Term (neq {bool} false true)
constant symbol
bool_inclusive A: Term ((eq {bool} A false) ∨ (eq {bool} A true))
constant symbol bool_exclusive: ε (neq bool false true)
constant
symbol bool_inclusive
: ε (forall {bool} (λa, ((eq {bool} a false) ∨ (λ_, eq {bool} a true))))
theorem excluded_middle (A: Term bool): Term (A ∨ ¬ A)
theorem excluded_middle: ε (forall {bool} (λa, a ∨ (λ_, ¬ a)))
proof
refine I.disjunction
(λA, A ∨ (¬ A))
?Ct ?Cf
assume F1 F2
refine F2
assume F1 F2
refine F1 F2
assume x f
refine f
qed
//
// xor_def
//
definition xor (a b: Term bool) ≔ neq {bool} a b
definition xor (a b: η bool) ≔ neq bool a b
theorem xor_def (a b: Term bool):
Term (eq {bool} (xor a b) (if {bool} a (bnot b) b))
set flag "print_implicits" on
theorem xor_def: ε (forall
{bool}
(λa,
forall
{bool}
(λb, eq {bool} (xor a b)
(if {bool} a (λ_, ¬ b) (λ_, b)))))
proof
refine I.disjunction
(λa: Term bool, forall {bool} (λb, eq {bool} (xor a b) (if {bool} a (bnot b) b)))
?Cf ?Ct
refine I.disjunction
(λ b, eq {bool} (xor false b) (if {bool} false (bnot b) b))
?Ccf ?Cct
admit
//
// Quantifier props
// Quantifier props[t: TYPE]
//
set declared "∃"
// Declared as a lemma in the prelude
definition ∃ {eT: Term uType} (P: Term eT → Term bool) ≔
¬ (forall (λx, ¬ (P x)))
definition ∃ {T: Set} (P: η T → η bool) ≔ ¬ (forall (λx, ¬ (P x)))
//
// Defined types
//
definition pred (eT: Univ Type) ≔ prod eT (λ_, bool)
// FIXME: needs another prenex polymorphism to be encoded,
// ∀K (λt, ? (t ~> {|set|})) ≔ λt: ϕ {|set|}, t ~> bool
// definition pred : χ (∀S (λt, scheme (t ~> {|set|}))) ≔ λt: ϕ {|set|}, t ~> bool
definition pred t ≔ t ~> bool
definition PRED ≔ pred
definition predicate ≔ pred
definition PREDICATE ≔ pred
......@@ -84,44 +81,43 @@ definition SETOF ≔ pred
//
// equality_props
//
rule if true $t _ ↪ $t
and if false _ $f ↪ $f
constant symbol If_true {T} (x y: Term T): Term ((if true x y) = x)
constant symbol If_false {T} (x y: Term T): Term ((if false x y) = y)
theorem if_same {T} b (x: Term T):
Term ((if b x x) = x)
set debug +ui
constant
symbol If_true
: ε (∀B
(λt, forall
(λx, forall {t} (λy, if true (λ_, x) (λ_, y) = x))))
constant
symbol If_false
: ε (∀B
(λt, forall
(λx, forall {t} (λy, if false (λ_, x) (λ_, y) = y))))
theorem if_same
: ε (∀B (λt,
forall {bool} (λb, forall (λx: η t,
if b (λ_, x) (λ_, x) = x))))
proof
assume T
refine I.disjunction
(λb, forall (λx, eq (if b x x) x))
?Cf[T] ?Ct[T]
assume x
refine If_false x x
assume x
refine If_true x x
qed
admit
symbol reflexivity_of_equal T (x: Term T) : Term (eq x x)
// set builtin "refl" ≔ reflexivity_of_equal
constant symbol reflexivity_of_equals: ε (∀B (λt, forall (λx: η t, x = x)))
set builtin "refl" ≔ reflexivity_of_equals
symbol transitivity_of_equal T (x y z: Term T):
Term ((x = y) ∧ (y = z)) → Term (eq x z)
constant
symbol transitivity_of_equals
: ε (∀B (λt,
forall
(λx: η t,
forall
(λy: η t,
forall
(λz: η t, (x = y) ∧ (λ_, y = z) ⊃ (λ_, x = z))))))
symbol symmetry_of_equal T (x y: Term T): Term (x = y) → Term (y = x)
constant
symbol symmetry_of_equals
: ε (∀B (λt, forall (λx: η t, (forall (λy: η t, (x = y) ⊃ (λ_, y = x))))))
//
// if_props
//
theorem lift_if1 (S T: Term uType) (a: Term bool) (x y: Term S)
(f: Term S → Term T):
Term ((f (if a x y)) = (if a (f x) (f y)))
proof
print
admit
theorem lift_if2 (S: Term uType) (a b c: Term bool) (x y: Term S):
Term ((if (if {bool} a b c) x y) = (if a (if b x y) (if c x y)))
proof
admit
require open
personoj.encodings.lhol
personoj.encodings.pvs_cert
personoj.encodings.equality
personoj.encodings.prenex
personoj.encodings.if
personoj.adlib.booleans
personoj.encodings.subtype
definition neq {T: Set} (x y: η T) ≔ bnot (eq x y)
set infix left 6 "/=" ≔ neq
set infix left 6 "≠" ≔ neq
//
// boolean_props
//
constant symbol bool_exclusive: ε (neq {bool} false true)
constant symbol bool_inclusive
: ε (forall {bool} (λx, ((eq {bool} x false) ∨ (eq {bool} x true))))
compute ε (forall {bool} (λx, ((eq {bool} x false) ∨ (eq {bool} x true))))
theorem excluded_middle: ε (forall {bool} (λx, x ∨ ¬ x))
proof
admit
//
// xor_def
//
definition xor (a b: η bool) ≔ neq {bool} a b
theorem xor_def
: ε (forall {bool}
(λa,
(forall {bool} (λb, eq {bool}
(xor a b)
(if {bool} {bool} bool
(S_Refl bool) (S_Refl bool)
a (bnot b) b)))))
proof
simpl
admit
//
// Quantifier props
//
set declared "∃"
// Declared as a lemma in the prelude
definition ∃ {T: Set} (P: η T → η bool) ≔ ¬ (forall (λx, ¬ (P x)))
//
// Defined types
//
definition pred (T: Set) ≔ arrd {T} (λ_, bool)
definition PRED ≔ pred
definition predicate ≔ pred
definition PREDICATE ≔ pred
definition setof ≔ pred
definition SETOF ≔ pred
symbol reflexivity_of_equal: ε (forallp_bool (λT, forall {T} (λx, eq x x)))
set builtin "refl" ≔ reflexivity_of_equal
symbol transitivity_of_equal
: ε (forallp_bool
(λT, forall
{T} (λx, forall
{T} (λy, forall
{T} (λz, (imp ((x = y) ∧ (y = z)) (x = z)))))))
symbol symmetry_of_equal
: ε (forallp_bool
(λT, forall
{T} (λx, forall
{T} (λy, (imp (x = y) (y = x))))))
//
// if_props
//
theorem lift_if1
: ε (forallp_bool
(λs,
(forallp_bool
(λt,
(forall
{bool} (λa,
forall
{s} (λx,
forall
{s} (λy,
forall
{s ~> t}
(λf, eq
(f (if s (S_Refl s) (S_Refl s) a x y))
(if t (S_Refl t) (S_Refl t) a (f x) (f y)))))))))))
proof
admit
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment