Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
personoj
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
koizel
personoj
Commits
a651edc5
Commit
a651edc5
authored
3 years ago
by
hondet
Browse files
Options
Downloads
Patches
Plain Diff
A library for lengthed tuples
parent
cda74053
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
personoj/extra/arity-tools.lp
+31
-13
31 additions, 13 deletions
personoj/extra/arity-tools.lp
personoj/extra/tuple.lp
+74
-0
74 additions, 0 deletions
personoj/extra/tuple.lp
with
105 additions
and
13 deletions
personoj/extra/arity-tools.lp
+
31
−
13
View file @
a651edc5
// Basically a library for vectors of `Set'
require open personoj.lhol;
require open personoj.lhol;
// A special natural numbers type for arities
// A special natural numbers type for arities
...
@@ -18,28 +19,31 @@ symbol four ≔ s three;
...
@@ -18,28 +19,31 @@ symbol four ≔ s three;
symbol five ≔ s four;
symbol five ≔ s four;
symbol six ≔ s five;
symbol six ≔ s five;
require personoj.nat as Pn;
/// A constructor from PVS nat
symbol & : Pn.Nat → N;
rule & (Pn.succ $n) ↪ s (& $n)
with & Pn.zero ↪ z;
// The type of vectors of Set
// The type of vectors of Set
constant symbol Vec
(n
: N
) :
TYPE;
constant symbol Vec : N
→
TYPE;
constant symbol cons {n: N}
(a
: Set
) (_:
Vec n
):
Vec (s n);
constant symbol cons {n: N}: Set
→
Vec n
→
Vec (s n);
constant symbol nil : Vec z;
constant symbol nil : Vec z;
/// Reversing vector
/// Operations on vectors
injective symbol rev' (n: N) (k: N) : Vec n → Vec k → Vec (+ k n);
rule rev' z _ _ $acc ↪ $acc
with rev' (s $n) $k (cons $x $tl) $acc ↪ rev' $n (s $k) $tl (cons $x $acc);
// [rev {n} v] reverses vector [v] (of length {n})
symbol rev {n: N} (v: Vec n): Vec n ≔ rev' n z v nil;
assert (x1 x2 x3: Set) ⊢
rev (cons x1 (cons x2 (cons x3 nil))) ≡ cons x3 (cons x2 (cons x1 nil));
// [rev-append v w] reverses vector [v] and appends it to [w].
// [rev-append v w] reverses vector [v] and appends it to [w].
injective symbol rev-append {n: N} {m: N}: Vec n → Vec m → Vec (+ m n);
injective symbol rev-append {n: N} {m: N}: Vec n → Vec m → Vec (+ m n);
rule rev-append (cons $x $tl) $v ↪ rev-append $tl (cons $x $v)
rule rev-append (cons $x $tl) $v ↪ rev-append $tl (cons $x $v)
with rev-append nil $v ↪ $v;
with rev-append nil $v ↪ $v;
// [rev v] reverses vector [v]
symbol rev {n: N} (v: Vec n): Vec n ≔ rev-append v nil;
assert (x1 x2 x3: Set) ⊢
rev (cons x1 (cons x2 (cons x3 nil))) ≡ cons x3 (cons x2 (cons x1 nil));
// [append v w] appends [v] to [w].
// [append v w] appends [v] to [w].
symbol append {n: N} {m: N} (v: Vec n) (w: Vec m): Vec (+ m n) ≔ rev-append (rev v) w;
symbol append {n: N} {m: N} (v: Vec n) (w: Vec m): Vec (+ m n) ≔
rev-append (rev v) w;
injective symbol Tvec' (n: N) (len: N): TYPE;
injective symbol Tvec' (n: N) (len: N): TYPE;
rule Tvec' (s $n) $l ↪ Set → Tvec' $n $l
rule Tvec' (s $n) $l ↪ Set → Tvec' $n $l
...
@@ -69,3 +73,17 @@ assert (x1 x2 x3 x4: Set) ⊢
...
@@ -69,3 +73,17 @@ assert (x1 x2 x3 x4: Set) ⊢
append (vec two x1 x2) (vec two x3 x4) ≡ vec four x1 x2 x3 x4;
append (vec two x1 x2) (vec two x3 x4) ≡ vec four x1 x2 x3 x4;
assert (x1 x2 x3 x4: Set) ⊢
assert (x1 x2 x3 x4: Set) ⊢
rev-append (vec two x2 x1) (vec two x3 x4) ≡ vec four x1 x2 x3 x4;
rev-append (vec two x2 x1) (vec two x3 x4) ≡ vec four x1 x2 x3 x4;
/// Accessors
symbol car {n: N}: Vec n → Set;
rule car (cons $x _) ↪ $x;
symbol cdr {n: N}: Vec (s n) → Vec n;
rule cdr (cons _ $x) ↪ $x;
symbol nth {n: N}: N → Vec n → Set;
rule nth z (cons $x _) ↪ $x
with nth (s $n) (cons _ $tl) ↪ nth $n $tl;
assert (x x': Set) ⊢ nth two (vec four x x x' x) ≡ x';
assert (x x': Set) ⊢ nth z (vec four x' x x x) ≡ x';
This diff is collapsed.
Click to expand it.
personoj/extra/tuple.lp
0 → 100644
+
74
−
0
View file @
a651edc5
// Another take on tuples as heterogeneous lists of fixed length
require open personoj.lhol;
require personoj.extra.arity-tools as A;
symbol +2 ≔ A.+ A.two;
/* [σ {n} v] creates the tuple type of [n] + 2 elements. */
constant symbol σ {n: A.N}: A.Vec (+2 n) → Set;
constant symbol cons {n: A.N} {a: Set} {v: A.Vec (+2 n)}:
El a → El (σ {n} v) → El (σ {A.s n} (A.cons a v));
constant symbol double {a: Set} {b: Set}:
El a → El b → El (σ (A.vec A.two a b));
symbol nth {n: A.N} {v: A.Vec (+2 n)} (k: A.N): El (σ v) → El (A.nth k v);
rule @nth A.z _ A.z (double $x _) ↪ $x
with @nth A.z _ (A.s A.z) (double _ $y) ↪ $y
with @nth (A.s $n) _ (A.s $k) (cons $x $tl) ↪ nth $k $tl
with @nth _ _ A.z (cons $x _) ↪ $x;
assert (x: Set) (e1 e2 e3: El x) ⊢ nth A.z (cons e1 (double e2 e3)) ≡ e1;
assert (x: Set) (e1 e2 e3: El x) ⊢ nth A.one (cons e1 (double e2 e3)) ≡ e2;
assert (x: Set) (e1 e2 e3: El x) ⊢ nth A.two (cons e1 (double e2 e3)) ≡ e3;
// [match f t] applies function [f] on each element of tuple [t]
symbol match {n: A.N} {v: A.Vec (+2 n)} {r: Set}: El (A.vec->arr v r) → El (σ v) → El r;
rule match $f (cons $x $tl) ↪ match ($f $x) $tl
with match $f (double $x $y) ↪ $f $x $y;
assert (x: Set) (e1 e2 e3: El x) ⊢ match (λ x1 x2 x3, x2) (cons e1 (double e2 e3)) ≡ e2;
/// Functions on tuples
/* [rev-append t u] appends [rev t] to [u]. */
injective symbol rev-append {n: A.N} {m: A.N} {v: A.Vec (+2 n)} {w: A.Vec (+2 m)}:
El (σ v) → El (σ w) → El (σ (A.rev-append v w));
rule rev-append (cons $hd $tl) $acc ↪ rev-append $tl (cons $hd $acc)
with rev-append (double $x $y) $acc ↪ cons $y (cons $x $acc);
/* [rev t] reverses [t]. */
injective symbol rev {n: A.N} {v: A.Vec (+2 n)}: El (σ v) → El (σ (A.rev v));
rule rev (double $x $y) ↪ double $y $x
with rev (cons $x (double $y $z)) ↪ cons $z (double $y $x)
with rev (cons $x (cons $y $tl)) ↪ rev-append $tl (double $y $x);
assert (x: Set) (e1 e2 e3: El x) ⊢ rev (cons e1 (double e2 e3)) ≡ (cons e3 (double e2 e1));
/// Short constructors
/* Let [m = n + 2] and [v = x₁ ... xₘ], then [mkσ/ty {n} v] is the arrow type
quantifying over [xᵢ] to yield the tuple type [σ x₁ ... xₘ]. */
symbol mkσ/ty {n: A.N} (v: A.Vec (+2 n)): Set ≔ A.vec->arr v (σ v);
assert (x1 x2 x3: Set) ⊢ mkσ/ty (A.vec A.three x1 x2 x3) ≡
x1 ~> x2 ~> x3 ~> σ (A.vec A.three x1 x2 x3);
//flag "print_implicits" on;
// [append-mkσ {n} {m} {v} {w} t x1 ... x(n+2)] builds the tuple made with [t]
// reversed and appended to [x1 ... x(n+2)].
symbol rappend-mkσ {n: A.N} {n/acc: A.N} {v: A.Vec (+2 n)} {v/acc: A.Vec (+2 n/acc)}:
El (σ {n/acc} v/acc) → El (A.vec->arr {+2 n} v (σ {+2 (A.+ n n/acc)} (A.rev-append v/acc v)));
rule rappend-mkσ {A.z} {_} {A.cons _ (A.cons _ A.nil)} {_} $acc $x $y ↪
rev-append $acc (double $x $y);
rule rappend-mkσ {A.s $n} {$n/acc} {A.cons _ $tl} {_} $acc $x ↪
rappend-mkσ {_} {A.s $n/acc} {$tl} {_} (cons $x $acc);
/* [mkσ {n} v e₁ ... eₘ] where [m = n + 2] builds the tuple made with element
[e₁] up to [eₘ]. Vector [v] contains the types of the [eᵢ]. */
symbol mkσ {n} (v: A.Vec (+2 n)): El (mkσ/ty v);
rule mkσ {A.z} (A.cons _ (A.cons _ A.nil)) $ex $ey ↪ double $ex $ey
with mkσ {A.s A.z} (A.cons _ (A.cons _ (A.cons _ A.nil))) $ex $ey $ez ↪
cons $ex (double $ey $ez)
with mkσ {A.s (A.s $n)} (A.cons $x (A.cons $y $tl)) $ex $ey ↪
rappend-mkσ {$n} {_} {$tl} {A.cons $y (A.cons $x A.nil)} (double {$y} {$x} $ey $ex);
assert (t: Set) (e1 e2 e3: El t) ⊢ mkσ (A.vec A.three t t t) e1 e2 e3 ≡ cons e1 (double e2 e3);
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment