Skip to content
Snippets Groups Projects
Commit cd69b678 authored by gabrielhdt's avatar gabrielhdt
Browse files

fixed true, if def, xor and thm

parent 708a4d82
Loading
require open encodings.cert_f
definition bool ≔ Prop
definition false ≔ @prod Type Prop uProp (λ x : Term uProp, x)
definition true ≔ Term false ⇒ Term false
definition bool ≔ uProp
definition false ≔ @prod Type Prop uProp (λ x, x)
definition true ≔ @prod Prop Prop false (λ _, false)
definition bnot (P: Term uProp) ≔ @prod Prop Prop P (λ _, false)
require open encodings.cert_f prelude.cert_f.booleans
symbol if {T: Term uType} : Term uProp ⇒ Term T ⇒ Term T ⇒ Term T
rule if true &t _ → &t
and if false _ &f → &f
require open encodings.cert_f prelude.cert_f.booleans prelude.cert_f.equalities
prelude.cert_f.notequal prelude.cert_f.if_def
// FIXME explicitness required
definition xor (a b: Univ Prop) ≔ @neq uProp a b
type ∀ (a b: Univ Prop), Term (xor a b)
type λ (a: Term uProp), @if uProp a a a
type ∀ a : Term uProp, Term (@if uProp a a a)
// FIXME explicitness required
theorem xor_def: ∀ (a b: Univ Prop),
Term (@eq uProp (xor a b) (@if uProp a (bnot b) b))
proof
assume a b
simpl
admit
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment